Analysis of the Relationship between Products in Consumer Shopping Patterns with the Apriori Algorithm

Authors

  • Afriosa Syawitri Universitas Negeri Padang Author
  • Siti Rahmi Hidayatullah Universitas Negeri Padang Author
  • Rusy Dina Universitas Negeri Padang Author

DOI:

https://doi.org/10.52630/jmbv.v14.i01.105

Keywords:

Data Mining , Apriori ALgorithm , Consumer Spending Patterns

Abstract

The fitri hijab shop is one of the shops that sells hijab, in this shop there are many transactions that can be utilized and can be managed to produce information. Analysis of transactions in this shop can help shop owners to create a business strategy, such as knowing items that are often purchased together. Data mining is a field of several scientific fields that combines techniques from machine learning, pattern recognition, statistics, databases and visualization to identify problems of retrieving information from large databases. One of the algorithms from data mining techniques that can be used to find consumer shopping patterns is the apriori algorithm. The apriori algorithm is one of the algorithms in data mining that is used to retrieve data with associative rules in determining the relationship of a combination of items. From the data analysis using the python programming language, 2 association rules were obtained, namely: If you buy an instant hijab, you will buy a square hijab with a confidence value of 0.53 and if you buy a square hijab, you will buy an instant hijab with a confidence value of 0.57.

References

Abidin, Z., Amartya, A. K., & Nurdin, A. (2022). Penerapan algoritma Apriori pada penjualan suku cadang kendaraan roda dua (Studi kasus: Toko Prima Motor Sidomulyo). Jurnal Teknoinfo, 16(2), 225–232. https://doi.org/10.33365/jti.v16i2.1459 DOI: https://doi.org/10.33365/jti.v16i2.1459

Fadila, S. A., Setiawansyah, & Darwis, D. (2021). Analisa data penjualan handphone dan elektronik menggunakan algoritma Apriori (Studi kasus: CV Rey Gasendra). Telefortech, 2(1), 1–6. https://doi.org/10.33365/tft.v2i1.1810 DOI: https://doi.org/10.31294/larik.v1i2.674

Prasetyo, A., Musyaffa, N., & Sastra, R. (2020). Implementasi data mining untuk analisa data penjualan dengan menggunakan algoritma Apriori (Studi kasus Dapoerin’s). Jurnal Khatulistiwa, 8(2), 94–101. https://doi.org/10.31294/jki.v8i2.8994 DOI: https://doi.org/10.31294/jki.v8i2.8994

Prasetya, T., Yanti, J. E., Purnamasari, A. I., Dikananda, A. R., & Anwar, S. (2021). Analisis data transaksi terhadap pola pembelian konsumen menggunakan metode algoritma Apriori. Informatics for Education and Professionals, 6(1), 43–52. https://doi.org/10.51211/itbi.v6i1.1688 DOI: https://doi.org/10.51211/itbi.v6i1.1688

Putra, C. P., Rifai, A., Widianto, K., & Irmawati. (2022). Penerapan metode association rule terhadap pola data penyakit pada RSUD Jakarta menggunakan algoritma Apriori. Jurnal Infortech, 4(1), 58–63. https://doi.org/10.31294/infortech.v4i1.12849

Ramadhan, W. S., & Sari, R. (2024). Implementasi algoritma Apriori dalam menentukan pola transaksi penjualan. Jurnal Infortech, 6(1), 52–58. https://doi.org/10.31294/infortech.v6i1.21964 DOI: https://doi.org/10.31294/infortech.v6i1.21964

Published

2025-05-21

How to Cite

Analysis of the Relationship between Products in Consumer Shopping Patterns with the Apriori Algorithm. (2025). Visioner : Jurnal Manajemen Dan Bisnis, 14(01), 52-59. https://doi.org/10.52630/jmbv.v14.i01.105